MATHEMATICS

DPP No. 18

Total Marks: 28

Max. Time: 29 min.

Topics: Fundamentals of Mathematics, Quadratic Equation

Type of Questions M.M., Min. Comprehension (no negative marking) Q.1 to 3 [9, 9] (3 marks, 3 min.) Single choice Objective (no negative marking) Q.4,5 (3 marks, 3 min.) [6, 6] Multiple choice objective (no negative marking) Q.6 41 (5 marks, 4 min.) [5, Subjective Questions (no negative marking) Q.7,8 (4 marks, 5 min.) [8, 10]

COMPREHENSION (For Q.1 to 3)

Consider the equation $||x - 1| - 2| = \lambda$

- 1. If the given equation has two solutions, then λ belongs to (A) $(2, \infty) \cup \{0\}$ (B) $(2, \infty)$ (C) (0, 2) (D) none of these
- 2. If the given equation has three solutions, then λ belongs to (A) (0, 2) (B) {2} (C) (0, ∞) (D) ($-\infty$, 0)
- Number of integral values of λ so that the given equation has four solutions, is (A) 0 (B) 1 (C) 2 (D) 3
- **4.** If α, β, γ are the roots of the equation $x^3 px^2 + qx r = 0$, then the value of $\sum \frac{\alpha\beta}{\gamma}$ is equal to

(A) pq + 3r (B) pq + r (C) pq - 3r (D)
$$\frac{q^2 - 2pr}{r}$$

5. \mathbf{S}_1 : For $ax^2 + bx + c = 0$ ($a \neq 0$) if a + b + c = 0, then the roots are 1 and c/a \mathbf{S}_2 : If $f(x) = ax^2 + bx + c$ ($a \neq 0$) has finite minimum value and both roots are of opposite sign, then f(0) < 0 \mathbf{S}_3 : If α is repeated root of $ax^2 + bx + c = 0$, $a \neq 0$, then $ax^2 + bx + c = (x - \alpha)^2$ \mathbf{S}_4 : For $ax^2 + bx + c = 0$ ($a \neq 0$), irrational roots occur in conjugate pairs only

State in order, whether S_1 , S_2 , S_3 , S_4 are true or false (A) TFTF (B) TTFF (C) FTFT (D) TTTT

6. If α , β are the roots of the equation $x^2 + \alpha x + \beta = 0$ such that $\alpha \neq \beta$ and $||x - \beta| - \alpha| < \alpha$, then (A) inequality is satisfied by exactly two integral values of x (B) inequality is satisfied by all values of $x \in (-4, -2)$

(C) Roots of the equation are opposite in sign

(D) $x^2 + \alpha x + \beta < 0 \ \forall \ x \in [-1, 0]$

7. Find the set of values of 'a' for which the roots of the quadratic equation

$$(a-5) x^2 + (\sqrt{4a-a^2}) x + (a^2 - 2a - 3) = 0$$
 are of opposite sign.

8. If inequality $\frac{ax^2 + 3x + 4}{x^2 + 2x + 2}$ < 5 is satisfied for all real values of x then find out greatest integral value of 'a'.

Answers Key

1. (A) **2**. (B) **3**. (B) **4**. (D)

5. (B) **6.** (A)(B)(C)(D) **7.** $a \in (3, 4]$

8. 2

